Media

How many emotions do humans have?

What do you think?

Improving the emotion-based classification by exploiting the fuzzy entropy in FCM clustering

***

Abstract

Emotion detection in the natural language text has drawn the attention of several scientific communities as well as commercial/marketing companies: analyzing human feelings expressed in the opinions and feedback of web users helps understand general moods and support market strategies for product advertising and market predictions. 

This paper proposes a framework for emotion-based classification from social streams, such as Twitter, according to Plutchik's wheel of emotions. 

An entropy-based weighted version of the fuzzy c-means (FCM) clustering algorithm, called EwFCM, to classify the data collected from streams has been proposed, improved by a fuzzy entropy method for the FCM center cluster initialization. 

Experimental results show that the proposed framework provides high accuracy in the classification of tweets according to Plutchik's primary emotions; moreover, the framework also allows the detection of secondary emotions, which, as defined by Plutchik, are the combination of the primary emotions. 

Finally, a comparative analysis with a similar fuzzy clustering-based approach for emotion classification shows that EwFCM converges more quickly with better performance in terms of accuracy, precision, and runtime. 

Finally, a straightforward mapping between the computed clusters and the emotion-based classes allows the assessment of the classification quality, reporting coherent and consistent results. 

***

https://onlinelibrary.wiley.com/doi/full/10.1002/int.22575

https://onlinelibrary.wiley.com/doi/epdf/10.1002/int.22575

***

No comments: